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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Model integration in CPS
Energy

Scheduling

Aerodynamics

● Subtle mismatches between technical domains

● Lead to costly fixes or failures
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Analytic aspect of integration
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● Frequency scaling is applicable only when:

– used after Bin packing

– the system is behaviorally deadline-monotonic
● Otherwise, frequency scaling may render the system not schedulable

● Hence, model consistency is not sufficient
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Analysis integration problem

System

Analysis

Analysis

Analysis

● Out-of-order execution

● Invalidation of assumptions

Analysis

Domain 2

Domain 1
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Existing solutions

● Assume-guarantee component composition does not handle 
analytic integration of tools [1][2].  

● Architectural views tackle model consistency, not analytic 
tool consistency [3][4]

● Meta-level AADL languages do not allow domain-specific 
semantics [5] 

● Previous work on contracts: single domain only, unsound and 
incomplete verification [6]

[1] Frehse et al. Assume-guarantee reasoning for hybrid I/O-automata by over-approximation of 
continuous interaction, 2004
[2] Sangiovanni-Vincentelli et al. Taming Dr. Frankenstein: contract-based design for cyber-physical 
systems, 2013
[3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013
[4] Rajhans et al. Supporting heterogeneity in cyber-physical systems architectures, 2014
[5] Boddy et al. The FUSED meta-language and tools for complex system engineering, 2011
[6] Nam et al. Resource allocation contracts for open analytic runtime models, 2011 
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Running example
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Analysis contracts approach

● Formalize analysis domains

● Specify dependencies and assumptions of analyses

● Determine correct ordering of analyses

● Verify assumptions of analyses
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Running example
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Verification domain
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Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄σ):

– A: set of sorts – system elements and standard 
sorts

● E.g.: ℬ, ℤ, Threads, Batteries, SchedPol

– S: Ai x ... x An → Ak – static functions that encode 
design properties

● E.g.: Period, Dline, CPUBind, Voltage

– R: Ai x ... x An → Ak – runtime functions that encode 
dynamic properties

● E.g.: CanPrmpt: Threads x Threads → ℬ
   TN: Batteries x ℤ → ℤ
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Verification domain

● Domain σ is a many-sorted signature (A, S, R, T, ⦃⦄σ):

– T: execution semantics – set of sequences of R 
assignments

● E.g.: thread scheduler state model for σsched

   battery state model for for σbatt

– ⦃⦄σ: domain interpretation for A and S 

● E.g.: ⦃SchedPol⦄σ = {RMS, DMS, EDF} 

● Architectural model m is an interpretation ⦃⦄m of A, S, 
and T

– E.g.: ⦃Threads⦄m = { SensorSample, Ctrl1, Ctrl2 }
⦃CPUBind⦄m = { (Ctrl1, CPU1), (Ctrl2, CPU2), ... }  

– ⦃⦄σ ∪ ⦃⦄m  is a full interpretation
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Analysis contract

● Given a domain σ, analysis contract C is a tuple (I, O, A, G) 

– Inputs I ⊆ A ∪ S

– Outputs O ⊆ A ∪ S

– Assumptions A ⊆ Fσ

– Guarantees G ⊆ Fσ

● Where:

– Fσ ::= {∀|ⱻ} v1..vn•φ  |  {∀|ⱻ} v1..vn•φ : ψ

– φ is a static logical formula over A and S

– ψ is an LTL formula over A, S, and R 

● Fσ semantics is given in a standard way

–  : means ⇒ in case of ∀, and ∧ in case of ⱻ
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Contract I/O dependencies
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Frequency scaling assumption
Behavioral equivalence to deadline-monotonic scheduling: 

● ∀ t1, t2: Threads • t1 ≠ t2 ∧ CPUBind(t1) = CPUBind(t2) :

   G (CanPrmpt(t1, t2) ⇒ Dline(t1) < Dline(t2))

PD

P=D

P=D

P=D

RMS ≠ DMS 

RMS = DMS 

P=D, Harmonic, Sync

P=D

P=D

EDF ≠ DMS 

EDF = DMS

P=D

P=D
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Assumption verification

● SMT solver finds solutions for static fragment φ

– ∀ t1, t2:Threads | t1 ≠ t2 ∧ CPUBind(t1) = CPUBind(t2)

● Model checking property ψ in a behavioral Promela 
model for each SMT solution:

– G (CanPrmpt(t1, t2) ⇒ Dline(t1) < Dline(t2))
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Battery modeling
Te

m
p

Thermal runaway

Discharge Charge

Battery Scheduling

Battery

● Abstraction: circuits
● Selects a scheduler for cell connections
● Oblivious of heat: treats any configuration as 

acceptable heat-wise

● Abstraction: geometry
● Simulates heat propagation
● Cannot scale to dynamic scheduling: 

simulates only fixed cell configurations

● Restrictions on acceptable thermal configurations
● Guarantee: unacceptable ones don't occur
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Battery scheduling guarantee

● “Bad” thermal configurations not reachable

● TN(b, i) ∈ R – number of cells in b with i thermal 
neighbors

● K(b, i) ∈ S – experimental coefficient for TN(b, i)
● Guarantee: 

∀ b: Batteries • G ( ∑ i=0..3 K(b, i)*TN(b, i) ) ≥ 0

TN(3) TN(2)TN(1)
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Battery modeling
Te
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Thermal runaway

Discharge Charge

Battery Scheduling

Battery

Selects a battery scheduler
Guarantee: ∀ b: Batteries • G ( ∑ i=0..3 K(b, i)*TN(b, i) ) ≥ 0
Verified with battery Promela/Spin model

K(b, i) 

Determines K(b, i) via simulation
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Outline

● Analysis integration problem

● Analysis contracts approach

– Specification

– Verification
● Experimental results
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Framework implementation

OSATE Execution Environment 

AADL model instances AADL types 

Analysis tools Model DB 

SMT problem 

engine 

Z3 

Sched Promela model 

Spin 

engine Batt Promela model 

Legend ------- ---, -----------------------__________ j rT-------- ------------------ I 

!f[;:]-(9 Executable )> Dataf low ~ 
I I --------------------------­L~---------------
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Scalability evaluation

Threads (R/D)MS  
time

EDF time

3 0.01 0.01

4 0.01 0.52

5 0.07 33.4

6 0.37 2290.0

7 2.18 Out Mem

8 12.4 Out Mem

9 71.2 Out Mem

10 421 Out Mem

11 Out Mem Out Mem

Cells FGURR
 time 

FGWRR 
time 

GPWRR
time

9 0.13 0.15 0.15

12 0.61 2.34 3.94

16 44 31.4 127

20 1060 619 Out Mem

25 Out Mem Out Mem Out Mem

● SMT solving typically takes less than 0.1 second 

● Spin model checking times:

All times are in seconds

 σ
sched 

:  σ
batt 

:
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Summary

● Analysis integration is error-prone

– Incorrect ordering

– Violation of implicit assumptions
● Our solution:

– Contract specification language

– Contract verification algorithm
● Effective, extensible, and scalable 

● Future work: 

– Assumptions behind T  implementation

– Analysis contracts for multiple views
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Contracts

 Security Analysis 

Ansec · C: I = {T,ThSecCl},O = {NotColoc},A = (/),G = {g} 

- g : \1 ~~ t2 · ThSecCl(~) =1= ThSecCl(t2 ) ~ ~ E NotColoc(t2 ) 

Multiprocessor scheduling: (Binpacking +scheduling) 

Ansched·C:l = {T,C,NotColoc,Per, WCET,Dline},O = {CPUBind},A = 0,G = {g} 

- g : \1 ~~ t 2 · t 1 E NotColoc(~) ~CPU Bind(~) =I= CPUBind(t2 ) 

Frequency Scaling 

Anfreqsc· C: I = {T,C,CPUBind, Dline},O = {CPUFreq},G = (/),A = {a} 

- a:\/~, t 2 ·CPU Bind(~) = CPUBind(t2 ): G(CanPrmpt(~, t 2 ) ~ Dline(~) < Dline(~) 

Model checking periodic program (REK): 

Anrek· C:I = {T,C,Per,Dline, WCET,CPUBind},O = {ThSafe},G = 0,A = {a11 a 2 } 

a1 : Vt · Per(t) = Dline(t), a 2 : Vt1 , t 2 • G(Canprmpt(t1 , t 2 ) => G -,CanPrmpt(t2 , t 1)) 

Thermal runaway: 

Antherm· C: I = {B, BatRows,BatCols, Voltage}, 0 = {K},A = 0, G = 0 

Battery Scheduling 

Anbsched· C: I = {B, BatRows,BatCols},O = {BatConnSchedPol,HasReqLifetime,SeriqlReq,ParalRea},A = 0, G = 
{g} 

g : G(K(O) X TN(O) + K(l) X TN(1) + K(2) X TN(2) + K(3) X TN(3) 2: 0) 
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